94 research outputs found

    Minimum Input Selection for Structural Controllability

    Full text link
    Given a linear system x˙=Ax\dot{x} = Ax, where AA is an n×nn \times n matrix with mm nonzero entries, we consider the problem of finding the smallest set of state variables to affect with an input so that the resulting system is structurally controllable. We further assume we are given a set of "forbidden state variables" FF which cannot be affected with an input and which we have to avoid in our selection. Our main result is that this problem can be solved deterministically in O(n+mn)O(n+m \sqrt{n}) operations

    Consensus with Ternary Messages

    Full text link
    We provide a protocol for real-valued average consensus by networks of agents which exchange only a single message from the ternary alphabet {-1,0,1} between neighbors at each step. Our protocol works on time-varying undirected graphs subject to a connectivity condition, has a worst-case convergence time which is polynomial in the number of agents and the initial values, and requires no global knowledge about the graph topologies on the part of each node to implement except for knowing an upper bound on the degrees of its neighbors

    Distributed optimization over time-varying directed graphs

    Full text link
    We consider distributed optimization by a collection of nodes, each having access to its own convex function, whose collective goal is to minimize the sum of the functions. The communications between nodes are described by a time-varying sequence of directed graphs, which is uniformly strongly connected. For such communications, assuming that every node knows its out-degree, we develop a broadcast-based algorithm, termed the subgradient-push, which steers every node to an optimal value under a standard assumption of subgradient boundedness. The subgradient-push requires no knowledge of either the number of agents or the graph sequence to implement. Our analysis shows that the subgradient-push algorithm converges at a rate of O(ln(t)/t)O(\ln(t)/\sqrt{t}), where the constant depends on the initial values at the nodes, the subgradient norms, and, more interestingly, on both the consensus speed and the imbalances of influence among the nodes

    On symmetric continuum opinion dynamics

    Full text link
    This paper investigates the asymptotic behavior of some common opinion dynamic models in a continuum of agents. We show that as long as the interactions among the agents are symmetric, the distribution of the agents' opinion converges. We also investigate whether convergence occurs in a stronger sense than merely in distribution, namely, whether the opinion of almost every agent converges. We show that while this is not the case in general, it becomes true under plausible assumptions on inter-agent interactions, namely that agents with similar opinions exert a non-negligible pull on each other, or that the interactions are entirely determined by their opinions via a smooth function.Comment: 28 pages, 2 figures, 3 file
    corecore